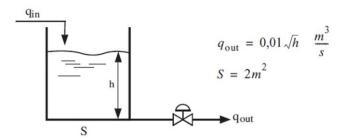
Series 3 solutions

Exercise 1



At t=0, while the system is in a stationary state $q_{in}=0.015m^2/s$, the feed flow is cut..

- At a stationary state: $\overline{q}_{in}=\overline{q}_{out}$

Therefore:
$$0.015 \left[\frac{m^3}{s} \right] = 0.01 \sqrt{\bar{h}} \left[\frac{m^3}{s} \right] \Rightarrow \bar{h} = 2.25 [m]$$

- Mass balance:

$$\frac{dm}{dt} = \frac{d(\rho A)}{dt} = m_{in} - m_{out}$$

$$\rho S \frac{dh}{dt} = \rho q_{in} - \rho q_{out} = \rho q_{in} - \rho (0.01\sqrt{h})$$

$$S \frac{dh}{dt} = q_{in} - 0.01\sqrt{h}$$

a) Empty half of the reservoir

For $t \ge 0$, $q_{in} = 0$. Therefore,

$$\frac{dh}{dt} = -0.01\sqrt{h}$$

By integrating the equation by separation of variables:

$$\int_{\overline{h}}^{\overline{h}} \frac{dh}{\sqrt{h}} = -\frac{0.01}{S} \int_{0}^{T} dt$$

With $S = 2[m^2]$ et $\bar{h} = 2,25[m]$, we get: T = 176[s]

b) Empty the entire reservoir

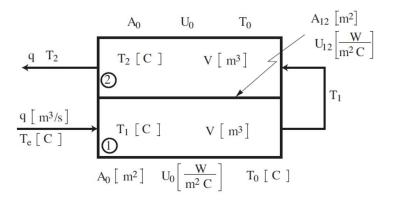
$$\int_{\overline{h}}^{0} \frac{dh}{\sqrt{h}} = -\frac{0.01}{S} \int_{0}^{T} dt \implies T = 600[s]$$

 $\underline{\textit{Note}}$: if the flow rate q_{out} were proportional to h,i.e. $q_{out} = kh$, then:

$$S\frac{dh}{dt} = -kh \implies \int_{\overline{h}}^{h} \frac{dh'}{\sqrt{h'}} = -\frac{k}{S} \int_{0}^{t} dt' \implies h(t) = \overline{h} \cdot e^{-\frac{k}{S}t}$$

Therefore, for $h(t) \to 0$, $t \to \infty$.

Exercise 2



a) Dynamic model for the system

Heat balance for zone 1:

$$V\rho c_p \frac{dT_1}{dt} = q\rho c_p (T_e - T_1) - U_{12}A_{12}(T_1 - T_2) - U_0A_0(T_1 - T_0)$$

Heat balance for zone 2:

$$V\rho c_p \frac{dT_2}{dt} = q\rho c_p (T_1 - T_2) - U_{12}A_{12}(T_2 - T_1) - U_0A_0(T_2 - T_0)$$

b) Linearity

In each differential equation, the product qT is appearing:

- If q varies, representing for instance the entry variable of the system: nonlinear model
- If *q* is constant: linear model

c) Comparison of the two systems

$$\begin{array}{c|c}
q & m^{3/s} \\
\hline
T_{e} & C \\
\hline
\end{array}$$

$$\begin{array}{c|c}
T & C \\
\hline
\end{array}$$

$$\begin{array}{c|c}
2V & m^{3} \\
\hline
\end{array}$$

$$\begin{array}{c|c}
T \\
\hline
\end{array}$$

$$\begin{array}{c|c}
T & T \\
\hline
\end{array}$$

$$\begin{array}{c|c}
T & T \\
\hline
\end{array}$$

Heat balance for case 2 (only one zone):

$$2V\rho c_p \frac{dT}{dt} = q\rho c_p (T_e - T) - 2U_0 A_0 (T - T_0)$$

Combined heat balance for case 1 (two zones):

$$V\rho c_{p} \left(\frac{dT_{1}}{dt} + \frac{dT_{2}}{dt} \right) = q\rho c_{p} (T_{e} - T_{1}) - 2U_{0}A_{0} \left(\frac{T_{1} + T_{2}}{2} - T_{0} \right)$$

Thus,

- the two systems are not equivalent,
- case 1 corresponds to case 2 for $T_1 = T_2 = T$.

d) Nonhomogeneous sections

If the two zones are not homogeneous, the system will have spatially varying parameters (described by partial differential equations)

Exercise 3

Linearize this model for the equilibrium point corresponding to $\bar{u}_1 = \bar{u}_2 = 1$, for positive values of \bar{x}_1 and \bar{x}_2 .

At the equilibrium point corresponding to $\bar{u}_1 = \bar{u}_2 = 1$, the variables \bar{x}_1 and \bar{x}_2 satisfy the relations:

$$0 = \bar{x}_1 + \bar{x}_2 - 2$$

$$0 = \bar{x}_1^2 - (\bar{x}_2 - 1)^2 + \bar{x}_1 \bar{x}_2 - 2$$

The solution to this system of nonlinear equations for positive values of \bar{x}_1 and \bar{x}_2 is:

$$\bar{x}_1 = \bar{x}_2 = 1$$

By linearizing a nonlinear dynamic system around this point, the following matrices A, B, C and D are obtained:

$$A = \begin{bmatrix} 1 & 1 \\ 2\bar{x}_1 + \bar{x}_2 & -2(\bar{x}_2 - 1) + \bar{x}_1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 3 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} -1 & -1 \\ -2\bar{u}_1 & -1 \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ -2 & -1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 + \bar{x}_2 & \bar{x}_1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$

$$D = \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right]$$

With:

$$\delta \dot{x} = A \delta x + B \delta u$$
 and $\delta y = C \delta x + D \delta u$ where $\delta x = \begin{bmatrix} \delta x_1 \\ \delta x_2 \end{bmatrix}$ etc.